Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J Biosci ; 2012 Mar; 37 (1): 103-113
Article in English | IMSEAR | ID: sea-161644

ABSTRACT

The interferon (IFN)-inducible, 2′,5′-oligoadenylate (2-5A)-dependent ribonuclease L (RNase L) plays key role in antiviral defense of mammalian cells. Induction by IFN and activation by double-stranded RNA lead to 2-5A cofactor synthesis, which activates RNase L by causing its dimerization. Active RNase L degrades single-stranded viral as well as cellular RNAs causing apoptosis of virus-infected cells. Earlier, we had reported that expression of recombinant human RNase L caused RNA-degradation and cell-growth inhibition in E. coli without the need for exogenous 2-5A. Expression of human RNase L in E. coli usually leads to problems of leaky expression, low yield and degradation of the recombinant protein, which demands number of chromatographic steps for its subsequent purification thereby, compromising its biochemical activity. Here, we report a convenient protocol for expression of full-length, soluble and biochemically active recombinant human RNase L as GST-RNase L fusion protein from E. coli utilizing a single-step affinity purification with an appreciable yield of the highly purified protein. Recombinant RNase L was characterized by SDS-PAGE, immunoblotting and MALDI-TOF analysis. A semi-quantitative agarose-gel-based ribonuclease assay was developed for measuring its 2-5A-dependent RNase L activity against cellular large rRNAs as substrates. The optimized expression conditions minimized degradation of the protein, making it a convenient method for purification of RNase L, which can be utilized to study effects of various agents on the RNase L activity and its protein– protein interactions.

2.
J Biosci ; 2010 Dec; 35(4): 547-556
Article in English | IMSEAR | ID: sea-161484

ABSTRACT

Interferon regulatory factor-2 (IRF-2) is an important transcription factor involved in cell growth regulation, immune response and cancer. IRF-2 can function as a transcriptional repressor and activator depending on its DNA-binding activity and protein–protein interactions. We compared the amino acid sequences of IRF-2 and found a C-terminal tetrapeptide (314PAPV317) of mouse IRF-2 to be different (314SSSM317) from human IRF-2. Recombinant GST-IRF-2 with 314PAPV317 (wild type) and 314SSSM317 (mutant) expressed in Escherichia coli were assessed for DNA-binding activity with 32P-(GAAAGT) 4 by electrophoretic mobility shift assay (EMSA). Wild type- and mutant GST-IRF-2 showed similar expression patterns and immunoreactivities but different DNA-binding activities. Mutant (mt) IRF-2 formed higher-molecular-mass, more and stronger DNA–protein complexes in comparison to wild type (wt) IRF-2. Anti-IRF-2 antibody stabilized the DNA–protein complexes formed by both wt IRF-2 and mt IRF-2, resolving the differences. This suggests that PAPV and SSSM sequences at 314-317 in the C-terminal region of mouse and human IRF-2 contribute to conformation of IRF-2 and infl uence DNA-binding activity of the N-terminal region, indicating intramolecular interactions. Thus, evolution of IRF-2 from murine to human genome has resulted in subtle differences in C-terminal amino acid motifs, which may contribute to qualitative changes in IRF-2-dependent DNA-binding activity and gene expression.

SELECTION OF CITATIONS
SEARCH DETAIL